You are not logged in.

#1 2019-11-25 18:37:53

Moosey_Linux
Member
From: Malmö Sweden
Registered: 2012-07-01
Posts: 44

LVM boot fails can't find volume group [SOLVED]

Hi guys my computer failed to boot after installing lvm2-2.02.186-2. After typing my encryption passphrase the boot process stops for some minutes then it says it can't find my SysPart1-root. I tried to solve this the lazy way and simple wait for a better update to come around. Now the lvm2-2.02.186-3 update came and the problem remains the same. This problem only occurs on my desktop computer where my LVM system is spread out over four different HDD's. On my laptop I'm running the latest LVM version whit out any problem.

vgdisplay

 --- Volume group ---
  VG Name               SysPart1
  System ID             
  Format                lvm2
  Metadata Areas        4
  Metadata Sequence No  17
  VG Access             read/write
  VG Status             resizable
  MAX LV                0
  Cur LV                5
  Open LV               4
  Max PV                0
  Cur PV                4
  Act PV                4
  VG Size               <1.99 TiB
  PE Size               4.00 MiB
  Total PE              520467
  Alloc PE / Size       520467 / <1.99 TiB
  Free  PE / Size       0 / 0   
  VG UUID               zA7pQS-3w7J-fW2R-bZ0Q-zMz1-Ybrg-9ki4EA
lsblk

NAME                  MAJ:MIN RM   SIZE RO TYPE  MOUNTPOINT
sda                     8:0    0 238.5G  0 disk  
|-sda1                  8:1    0     2G  0 part  /boot
|-sda2                  8:2    0 138.8G  0 part  
| `-root              254:0    0 138.8G  0 crypt 
|   |-SysPart1-root   254:1    0    50G  0 lvm   /
|   `-SysPart1-home   254:5    0   1.7T  0 lvm   /home
`-sda3                  8:3    0  97.7G  0 part  
sdb                     8:16   0 279.5G  0 disk  
|-sdb1                  8:17   0 101.7G  0 part  
`-sdb2                  8:18   0 177.8G  0 part  
  `-Disk2             254:3    0 177.8G  0 crypt 
    |-SysPart1-home   254:5    0   1.7T  0 lvm   /home
    `-SysPart1-var    254:6    0    40G  0 lvm   /var
sdc                     8:32   0 931.5G  0 disk  
|-sdc1                  8:33   0   785G  0 part  
| `-Disk3             254:4    0   785G  0 crypt 
|   |-SysPart1-home   254:5    0   1.7T  0 lvm   /home
|   |-SysPart1-var    254:6    0    40G  0 lvm   /var
|   `-SysPart1-BackUp 254:7    0   100G  0 lvm   /media/Backup
`-sdc2                  8:34   0 146.5G  0 part  
sdd                     8:48   0 931.5G  0 disk  
`-Disk4               254:2    0 931.5G  0 crypt 
  |-SysPart1-home     254:5    0   1.7T  0 lvm   /home
  |-SysPart1-var      254:6    0    40G  0 lvm   /var
  `-SysPart1-BackUp2  254:8    0   150G  0 lvm   
/etc/mkinitcpio.conf

HOOKS=(base udev autodetect modconf lvm2 encrypt block filesystems keyboard fsck)
/boot/syslinux/syslinux.cfg

[LABEL arch
    MENU LABEL Arch Linux
    LINUX ../vmlinuz-linux
    APPEND root=/dev/mapper/SysPart1-root cryptdevice=/dev/sda2:root vga=773
    INITRD ../initramfs-linux.img

Last edited by Moosey_Linux (2020-01-15 20:45:07)

Offline

#2 2019-11-25 21:50:53

xerxes_
Member
Registered: 2018-04-29
Posts: 662

Re: LVM boot fails can't find volume group [SOLVED]

In file /etc/mkinitcpio.conf in "hooks" line maybe try place encrypt before lvm2.

Offline

#3 2019-11-26 21:25:56

j4y4r
Member
Registered: 2019-11-26
Posts: 4

Re: LVM boot fails can't find volume group [SOLVED]

I experienced the same issue, for me it was impossible to boot up my system with the latest version of LVM because the partition containing root was not found.
Tried two evenings and half a day to find the exact cause and debug the problem, changing various options found across the forum about similar issues, like changing the order of the hooks, regenerating initramfs, changing to systemd init, etc. nothing fixed the problem.
My finding was that the logs showed the disks were scanned for lvm, but no changes were commited.
Doing a manual

 lvm vgscan && lvm vgchange -ay 

in the rescue shell shows the partition and i was able to unlock it with cryptsetup.

At the end i plugged in the arch-iso stick and downgraded lvm, device-mapper and cryptsetup to this version:

device-mapper-2.02.185-1-x86_64.pkg.tar.xz cryptsetup-2.1.0-1-x86_64.pkg.tar.xz lvm2-2.02.185-1-x86_64.pkg.tar.xz

After downgrading the packages i was able to boot the system again.

My System is setup following LVM on Luks
The LVM has been extended with two disks, they are mounted at non critical points, so they should not cause the issue.

Offline

#4 2019-11-27 21:08:21

Moosey_Linux
Member
From: Malmö Sweden
Registered: 2012-07-01
Posts: 44

Re: LVM boot fails can't find volume group [SOLVED]

xerxes_ wrote:

In file /etc/mkinitcpio.conf in "hooks" line maybe try place encrypt before lvm2.

My laptop is running the latest LVM2 version and with the same mkinitcpio hooks and same order it cant be that.

j4y4r wrote:

I experienced the same issue,

Then we are two to fix this.

xerxes_ wrote:

My finding was that the logs showed the disks were scanned for lvm, but no changes were commited.

What logs did you check? I thought there wouldn't be any as the system partition never mounted or opened. Was it in systemd journal maybe?

j4y4r wrote:

in the rescue shell shows the partition and i was able to unlock it with cryptsetup.

At the end i plugged in the arch-iso stick and downgraded lvm, device-mapper and cryptsetup to this version:

My disks were all unlocked but my rescue shell lacked LVM support so I couldn't do to much. I never hade to downgrade any thing but the LVM2 package if you try to upgrade device-mapper and cryptsetup I think you will be fine. If not it can be worth trying so we know if we share the same problem.

Offline

#5 2019-11-29 14:03:28

j4y4r
Member
Registered: 2019-11-26
Posts: 4

Re: LVM boot fails can't find volume group [SOLVED]

Moosey_Linux wrote:

What logs did you check? I thought there wouldn't be any as the system partition never mounted or opened. Was it in systemd journal maybe?

When using systemd init, logs are more verbose.

Moosey_Linux wrote:

My disks were all unlocked but my rescue shell lacked LVM support so I couldn't do to much. I never hade to downgrade any thing but the LVM2 package if you try to upgrade device-mapper and cryptsetup I think you will be fine. If not it can be worth trying so we know if we share the same problem.

Well then we do not have the same issue, since you got no LVM in the rescue shell , did you try regenerating initcpio with

mkinitcpio -p linux

?
Maybe i am missing something..how do you know the disk got unlocked without LVM support?
I use a key from a USB Drive to unlock my root partition, if i do not have this attached the boot fails while searching for the USB drive, obviously.
This does not mean only because there is no error when searching for the disk the root partition got unlocked when the Drive is inserted.

Because of the version i downgraded lvm to i had to use another version of device-mapper as well.
You are right about cryptsetup, this should be fine to upgrade.

Offline

#6 2019-12-05 11:32:47

Efka
Member
From: Kaunas
Registered: 2014-04-27
Posts: 74
Website

Re: LVM boot fails can't find volume group [SOLVED]

I'm, not 100% my question will be right but let's try:
What Kernel do you use?
I just had some issue whit 5.4 kernel and encryption and lvm and luks, had to downgrade to 5.3 Kernel and also my emergency shell was giving no info ... but when i ran "lvm vgchange -ay" i had errors .


IBM Lenovo ThinkPad T61 ; Lenovo ThinkPad X220; Lenovo ThinkPad T440p; Lenovo Thinkpad W520; Lenovo Thinkpad P71; ThinkPad X1 Yoga Gen1;  FrankenPad T25
Asus Z10PE D-16 WS; 2x Intel Xeon E-5 2690V4; 32GB ECC; nVidia Titan V CEO | Asus ROG Gene XI Intel i9-9900k nVidia 3070Ti

Offline

#7 2019-12-07 22:32:26

j4y4r
Member
Registered: 2019-11-26
Posts: 4

Re: LVM boot fails can't find volume group [SOLVED]

Efka wrote:

What Kernel do you use?

My Kernel version is 5.3.12, did not update the system in question since then.
The lvm and device-mapper package are still the same versions which i believe where causing the problems for me, i doubt the newer kernel will solve the issue.
As long as no one can tell me for sure what is causing the issue, limited time for playing around with a broken system force me to wait for newer package versions before giving it another try.

Offline

#8 2019-12-22 10:42:53

j4y4r
Member
Registered: 2019-11-26
Posts: 4

Re: LVM boot fails can't find volume group [SOLVED]

Update, tested the latest packages:
lvm2 2.02.186-4
device-mapper 2.02.186-4

as suspected before, the kernel version seems not the problem....updatet to 5.4.5-arch1-1 and still got the same issue that my root partition could not be found.
There has to be an issue with lvm2 or device-mapper, again downgrading the packages to the version mentioned in post 3# solves the problem and my system can boot again.
Hopefully i will have some spare time during holidays to inspect the issue and report my findings.

Offline

#9 2020-01-14 19:05:48

Moosey_Linux
Member
From: Malmö Sweden
Registered: 2012-07-01
Posts: 44

Re: LVM boot fails can't find volume group [SOLVED]

Yes j4y4r you were right I have LVM support in my emergency shell. I haven't had any time to care about my computer and now i tried it and I had forgotten to wright "lvm vgchange -ay"  and only written "vgchange -ay"

lvm vgchange -ay
mount /dev/mapper/SysPart1-root new_root
exit

The computer boots perfectly but it is really annoying to do every boot.

Offline

#10 2020-01-14 19:19:01

CarbonChauvinist
Member
Registered: 2012-06-16
Posts: 412
Website

Re: LVM boot fails can't find volume group [SOLVED]

@Moosey_Linux Please post (in code tags), or link to, your `/etc/lvm/lvm.conf` -- especially interested in the `use_lvmetad` value.

Also, order may not matter for this issue, but according to wiki (emphasis/bold mine):

Arch Wiki LVM Page wrote:

dev is there by default. Edit the file and insert lvm2 between block and filesystems

/etc/mkinitcpio.conf
HOOKS=(base udev ... block lvm2 filesystems)

Last edited by CarbonChauvinist (2020-01-14 19:26:16)


"the wind-blown way, wanna win? don't play"

Offline

#11 2020-01-14 20:19:03

Moosey_Linux
Member
From: Malmö Sweden
Registered: 2012-07-01
Posts: 44

Re: LVM boot fails can't find volume group [SOLVED]

/etc/lvm/lvm.conf use_lvmetad

use_lvmetad = 1

/etc/lvm/lvm.conf

# This is an example configuration file for the LVM2 system.
# It contains the default settings that would be used if there was no
# /etc/lvm/lvm.conf file.
#
# Refer to 'man lvm.conf' for further information including the file layout.
#
# Refer to 'man lvm.conf' for information about how settings configured in
# this file are combined with built-in values and command line options to
# arrive at the final values used by LVM.
#
# Refer to 'man lvmconfig' for information about displaying the built-in
# and configured values used by LVM.
#
# If a default value is set in this file (not commented out), then a
# new version of LVM using this file will continue using that value,
# even if the new version of LVM changes the built-in default value.
#
# To put this file in a different directory and override /etc/lvm set
# the environment variable LVM_SYSTEM_DIR before running the tools.
#
# N.B. Take care that each setting only appears once if uncommenting
# example settings in this file.


# Configuration section config.
# How LVM configuration settings are handled.
config {

	# Configuration option config/checks.
	# If enabled, any LVM configuration mismatch is reported.
	# This implies checking that the configuration key is understood by
	# LVM and that the value of the key is the proper type. If disabled,
	# any configuration mismatch is ignored and the default value is used
	# without any warning (a message about the configuration key not being
	# found is issued in verbose mode only).
	checks = 1

	# Configuration option config/abort_on_errors.
	# Abort the LVM process if a configuration mismatch is found.
	abort_on_errors = 0

	# Configuration option config/profile_dir.
	# Directory where LVM looks for configuration profiles.
	profile_dir = "/etc/lvm/profile"
}

# Configuration section devices.
# How LVM uses block devices.
devices {

	# Configuration option devices/dir.
	# Directory in which to create volume group device nodes.
	# Commands also accept this as a prefix on volume group names.
	# This configuration option is advanced.
	dir = "/dev"

	# Configuration option devices/scan.
	# Directories containing device nodes to use with LVM.
	# This configuration option is advanced.
	scan = [ "/dev" ]

	# Configuration option devices/obtain_device_list_from_udev.
	# Obtain the list of available devices from udev.
	# This avoids opening or using any inapplicable non-block devices or
	# subdirectories found in the udev directory. Any device node or
	# symlink not managed by udev in the udev directory is ignored. This
	# setting applies only to the udev-managed device directory; other
	# directories will be scanned fully. LVM needs to be compiled with
	# udev support for this setting to apply.
	obtain_device_list_from_udev = 1

	# Configuration option devices/external_device_info_source.
	# Select an external device information source.
	# Some information may already be available in the system and LVM can
	# use this information to determine the exact type or use of devices it
	# processes. Using an existing external device information source can
	# speed up device processing as LVM does not need to run its own native
	# routines to acquire this information. For example, this information
	# is used to drive LVM filtering like MD component detection, multipath
	# component detection, partition detection and others.
	# 
	# Accepted values:
	#   none
	#     No external device information source is used.
	#   udev
	#     Reuse existing udev database records. Applicable only if LVM is
	#     compiled with udev support.
	# 
	external_device_info_source = "none"

	# Configuration option devices/preferred_names.
	# Select which path name to display for a block device.
	# If multiple path names exist for a block device, and LVM needs to
	# display a name for the device, the path names are matched against
	# each item in this list of regular expressions. The first match is
	# used. Try to avoid using undescriptive /dev/dm-N names, if present.
	# If no preferred name matches, or if preferred_names are not defined,
	# the following built-in preferences are applied in order until one
	# produces a preferred name:
	# Prefer names with path prefixes in the order of:
	# /dev/mapper, /dev/disk, /dev/dm-*, /dev/block.
	# Prefer the name with the least number of slashes.
	# Prefer a name that is a symlink.
	# Prefer the path with least value in lexicographical order.
	# 
	# Example
	# preferred_names = [ "^/dev/mpath/", "^/dev/mapper/mpath", "^/dev/[hs]d" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option devices/filter.
	# Limit the block devices that are used by LVM commands.
	# This is a list of regular expressions used to accept or reject block
	# device path names. Each regex is delimited by a vertical bar '|'
	# (or any character) and is preceded by 'a' to accept the path, or
	# by 'r' to reject the path. The first regex in the list to match the
	# path is used, producing the 'a' or 'r' result for the device.
	# When multiple path names exist for a block device, if any path name
	# matches an 'a' pattern before an 'r' pattern, then the device is
	# accepted. If all the path names match an 'r' pattern first, then the
	# device is rejected. Unmatching path names do not affect the accept
	# or reject decision. If no path names for a device match a pattern,
	# then the device is accepted. Be careful mixing 'a' and 'r' patterns,
	# as the combination might produce unexpected results (test changes.)
	# Run vgscan after changing the filter to regenerate the cache.
	# See the use_lvmetad comment for a special case regarding filters.
	# 
	# Example
	# Accept every block device:
	# filter = [ "a|.*/|" ]
	# Reject the cdrom drive:
	# filter = [ "r|/dev/cdrom|" ]
	# Work with just loopback devices, e.g. for testing:
	# filter = [ "a|loop|", "r|.*|" ]
	# Accept all loop devices and ide drives except hdc:
	# filter = [ "a|loop|", "r|/dev/hdc|", "a|/dev/ide|", "r|.*|" ]
	# Use anchors to be very specific:
	# filter = [ "a|^/dev/hda8$|", "r|.*/|" ]
	# 
	# This configuration option has an automatic default value.
	# filter = [ "a|.*/|" ]

	# Configuration option devices/global_filter.
	# Limit the block devices that are used by LVM system components.
	# Because devices/filter may be overridden from the command line, it is
	# not suitable for system-wide device filtering, e.g. udev and lvmetad.
	# Use global_filter to hide devices from these LVM system components.
	# The syntax is the same as devices/filter. Devices rejected by
	# global_filter are not opened by LVM.
	# This configuration option has an automatic default value.
	# global_filter = [ "a|.*/|" ]

	# Configuration option devices/cache_dir.
	# Directory in which to store the device cache file.
	# The results of filtering are cached on disk to avoid rescanning dud
	# devices (which can take a very long time). By default this cache is
	# stored in a file named .cache. It is safe to delete this file; the
	# tools regenerate it. If obtain_device_list_from_udev is enabled, the
	# list of devices is obtained from udev and any existing .cache file
	# is removed.
	cache_dir = "/etc/lvm/cache"

	# Configuration option devices/cache_file_prefix.
	# A prefix used before the .cache file name. See devices/cache_dir.
	cache_file_prefix = ""

	# Configuration option devices/write_cache_state.
	# Enable/disable writing the cache file. See devices/cache_dir.
	write_cache_state = 1

	# Configuration option devices/types.
	# List of additional acceptable block device types.
	# These are of device type names from /proc/devices, followed by the
	# maximum number of partitions.
	# 
	# Example
	# types = [ "fd", 16 ]
	# 
	# This configuration option is advanced.
	# This configuration option does not have a default value defined.

	# Configuration option devices/sysfs_scan.
	# Restrict device scanning to block devices appearing in sysfs.
	# This is a quick way of filtering out block devices that are not
	# present on the system. sysfs must be part of the kernel and mounted.)
	sysfs_scan = 1

	# Configuration option devices/scan_lvs.
	# Scan LVM LVs for layered PVs, allowing LVs to be used as PVs.
	# When 1, LVM will detect PVs layered on LVs, and caution must be
	# taken to avoid a host accessing a layered VG that may not belong
	# to it, e.g. from a guest image. This generally requires excluding
	# the LVs with device filters. Also, when this setting is enabled,
	# every LVM command will scan every active LV on the system (unless
	# filtered), which can cause performance problems on systems with
	# many active LVs. When this setting is 0, LVM will not detect or
	# use PVs that exist on LVs, and will not allow a PV to be created on
	# an LV. The LVs are ignored using a built in device filter that
	# identifies and excludes LVs.
	scan_lvs = 0

	# Configuration option devices/multipath_component_detection.
	# Ignore devices that are components of DM multipath devices.
	multipath_component_detection = 1

	# Configuration option devices/md_component_detection.
	# Ignore devices that are components of software RAID (md) devices.
	md_component_detection = 1

	# Configuration option devices/fw_raid_component_detection.
	# Ignore devices that are components of firmware RAID devices.
	# LVM must use an external_device_info_source other than none for this
	# detection to execute.
	fw_raid_component_detection = 0

	# Configuration option devices/md_chunk_alignment.
	# Align PV data blocks with md device's stripe-width.
	# This applies if a PV is placed directly on an md device.
	md_chunk_alignment = 1

	# Configuration option devices/default_data_alignment.
	# Default alignment of the start of a PV data area in MB.
	# If set to 0, a value of 64KiB will be used.
	# Set to 1 for 1MiB, 2 for 2MiB, etc.
	# This configuration option has an automatic default value.
	# default_data_alignment = 1

	# Configuration option devices/data_alignment_detection.
	# Detect PV data alignment based on sysfs device information.
	# The start of a PV data area will be a multiple of minimum_io_size or
	# optimal_io_size exposed in sysfs. minimum_io_size is the smallest
	# request the device can perform without incurring a read-modify-write
	# penalty, e.g. MD chunk size. optimal_io_size is the device's
	# preferred unit of receiving I/O, e.g. MD stripe width.
	# minimum_io_size is used if optimal_io_size is undefined (0).
	# If md_chunk_alignment is enabled, that detects the optimal_io_size.
	# This setting takes precedence over md_chunk_alignment.
	data_alignment_detection = 1

	# Configuration option devices/data_alignment.
	# Alignment of the start of a PV data area in KiB.
	# If a PV is placed directly on an md device and md_chunk_alignment or
	# data_alignment_detection are enabled, then this setting is ignored.
	# Otherwise, md_chunk_alignment and data_alignment_detection are
	# disabled if this is set. Set to 0 to use the default alignment or the
	# page size, if larger.
	data_alignment = 0

	# Configuration option devices/data_alignment_offset_detection.
	# Detect PV data alignment offset based on sysfs device information.
	# The start of a PV aligned data area will be shifted by the
	# alignment_offset exposed in sysfs. This offset is often 0, but may
	# be non-zero. Certain 4KiB sector drives that compensate for windows
	# partitioning will have an alignment_offset of 3584 bytes (sector 7
	# is the lowest aligned logical block, the 4KiB sectors start at
	# LBA -1, and consequently sector 63 is aligned on a 4KiB boundary).
	# pvcreate --dataalignmentoffset will skip this detection.
	data_alignment_offset_detection = 1

	# Configuration option devices/ignore_suspended_devices.
	# Ignore DM devices that have I/O suspended while scanning devices.
	# Otherwise, LVM waits for a suspended device to become accessible.
	# This should only be needed in recovery situations.
	ignore_suspended_devices = 0

	# Configuration option devices/ignore_lvm_mirrors.
	# Do not scan 'mirror' LVs to avoid possible deadlocks.
	# This avoids possible deadlocks when using the 'mirror' segment type.
	# This setting determines whether LVs using the 'mirror' segment type
	# are scanned for LVM labels. This affects the ability of mirrors to
	# be used as physical volumes. If this setting is enabled, it is
	# impossible to create VGs on top of mirror LVs, i.e. to stack VGs on
	# mirror LVs. If this setting is disabled, allowing mirror LVs to be
	# scanned, it may cause LVM processes and I/O to the mirror to become
	# blocked. This is due to the way that the mirror segment type handles
	# failures. In order for the hang to occur, an LVM command must be run
	# just after a failure and before the automatic LVM repair process
	# takes place, or there must be failures in multiple mirrors in the
	# same VG at the same time with write failures occurring moments before
	# a scan of the mirror's labels. The 'mirror' scanning problems do not
	# apply to LVM RAID types like 'raid1' which handle failures in a
	# different way, making them a better choice for VG stacking.
	ignore_lvm_mirrors = 1

	# Configuration option devices/disable_after_error_count.
	# Number of I/O errors after which a device is skipped.
	# During each LVM operation, errors received from each device are
	# counted. If the counter of a device exceeds the limit set here,
	# no further I/O is sent to that device for the remainder of the
	# operation. Setting this to 0 disables the counters altogether.
	disable_after_error_count = 0

	# Configuration option devices/require_restorefile_with_uuid.
	# Allow use of pvcreate --uuid without requiring --restorefile.
	require_restorefile_with_uuid = 1

	# Configuration option devices/pv_min_size.
	# Minimum size in KiB of block devices which can be used as PVs.
	# In a clustered environment all nodes must use the same value.
	# Any value smaller than 512KiB is ignored. The previous built-in
	# value was 512.
	pv_min_size = 2048

	# Configuration option devices/issue_discards.
	# Issue discards to PVs that are no longer used by an LV.
	# Discards are sent to an LV's underlying physical volumes when the LV
	# is no longer using the physical volumes' space, e.g. lvremove,
	# lvreduce. Discards inform the storage that a region is no longer
	# used. Storage that supports discards advertise the protocol-specific
	# way discards should be issued by the kernel (TRIM, UNMAP, or
	# WRITE SAME with UNMAP bit set). Not all storage will support or
	# benefit from discards, but SSDs and thinly provisioned LUNs
	# generally do. If enabled, discards will only be issued if both the
	# storage and kernel provide support.
	issue_discards = 0

	# Configuration option devices/allow_changes_with_duplicate_pvs.
	# Allow VG modification while a PV appears on multiple devices.
	# When a PV appears on multiple devices, LVM attempts to choose the
	# best device to use for the PV. If the devices represent the same
	# underlying storage, the choice has minimal consequence. If the
	# devices represent different underlying storage, the wrong choice
	# can result in data loss if the VG is modified. Disabling this
	# setting is the safest option because it prevents modifying a VG
	# or activating LVs in it while a PV appears on multiple devices.
	# Enabling this setting allows the VG to be used as usual even with
	# uncertain devices.
	allow_changes_with_duplicate_pvs = 0
}

# Configuration section allocation.
# How LVM selects space and applies properties to LVs.
allocation {

	# Configuration option allocation/cling_tag_list.
	# Advise LVM which PVs to use when searching for new space.
	# When searching for free space to extend an LV, the 'cling' allocation
	# policy will choose space on the same PVs as the last segment of the
	# existing LV. If there is insufficient space and a list of tags is
	# defined here, it will check whether any of them are attached to the
	# PVs concerned and then seek to match those PV tags between existing
	# extents and new extents.
	# 
	# Example
	# Use the special tag "@*" as a wildcard to match any PV tag:
	# cling_tag_list = [ "@*" ]
	# LVs are mirrored between two sites within a single VG, and
	# PVs are tagged with either @site1 or @site2 to indicate where
	# they are situated:
	# cling_tag_list = [ "@site1", "@site2" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option allocation/maximise_cling.
	# Use a previous allocation algorithm.
	# Changes made in version 2.02.85 extended the reach of the 'cling'
	# policies to detect more situations where data can be grouped onto
	# the same disks. This setting can be used to disable the changes
	# and revert to the previous algorithm.
	maximise_cling = 1

	# Configuration option allocation/use_blkid_wiping.
	# Use blkid to detect existing signatures on new PVs and LVs.
	# The blkid library can detect more signatures than the native LVM
	# detection code, but may take longer. LVM needs to be compiled with
	# blkid wiping support for this setting to apply. LVM native detection
	# code is currently able to recognize: MD device signatures,
	# swap signature, and LUKS signatures. To see the list of signatures
	# recognized by blkid, check the output of the 'blkid -k' command.
	use_blkid_wiping = 1

	# Configuration option allocation/wipe_signatures_when_zeroing_new_lvs.
	# Look for and erase any signatures while zeroing a new LV.
	# The --wipesignatures option overrides this setting.
	# Zeroing is controlled by the -Z/--zero option, and if not specified,
	# zeroing is used by default if possible. Zeroing simply overwrites the
	# first 4KiB of a new LV with zeroes and does no signature detection or
	# wiping. Signature wiping goes beyond zeroing and detects exact types
	# and positions of signatures within the whole LV. It provides a
	# cleaner LV after creation as all known signatures are wiped. The LV
	# is not claimed incorrectly by other tools because of old signatures
	# from previous use. The number of signatures that LVM can detect
	# depends on the detection code that is selected (see
	# use_blkid_wiping.) Wiping each detected signature must be confirmed.
	# When this setting is disabled, signatures on new LVs are not detected
	# or erased unless the --wipesignatures option is used directly.
	wipe_signatures_when_zeroing_new_lvs = 1

	# Configuration option allocation/mirror_logs_require_separate_pvs.
	# Mirror logs and images will always use different PVs.
	# The default setting changed in version 2.02.85.
	mirror_logs_require_separate_pvs = 0

	# Configuration option allocation/raid_stripe_all_devices.
	# Stripe across all PVs when RAID stripes are not specified.
	# If enabled, all PVs in the VG or on the command line are used for
	# raid0/4/5/6/10 when the command does not specify the number of
	# stripes to use.
	# This was the default behaviour until release 2.02.162.
	# This configuration option has an automatic default value.
	# raid_stripe_all_devices = 0

	# Configuration option allocation/cache_pool_metadata_require_separate_pvs.
	# Cache pool metadata and data will always use different PVs.
	cache_pool_metadata_require_separate_pvs = 0

	# Configuration option allocation/cache_metadata_format.
	# Sets default metadata format for new cache.
	# 
	# Accepted values:
	#   0  Automatically detected best available format
	#   1  Original format
	#   2  Improved 2nd. generation format
	# 
	# This configuration option has an automatic default value.
	# cache_metadata_format = 0

	# Configuration option allocation/cache_mode.
	# The default cache mode used for new cache.
	# 
	# Accepted values:
	#   writethrough
	#     Data blocks are immediately written from the cache to disk.
	#   writeback
	#     Data blocks are written from the cache back to disk after some
	#     delay to improve performance.
	# 
	# This setting replaces allocation/cache_pool_cachemode.
	# This configuration option has an automatic default value.
	# cache_mode = "writethrough"

	# Configuration option allocation/cache_policy.
	# The default cache policy used for new cache volume.
	# Since kernel 4.2 the default policy is smq (Stochastic multiqueue),
	# otherwise the older mq (Multiqueue) policy is selected.
	# This configuration option does not have a default value defined.

	# Configuration section allocation/cache_settings.
	# Settings for the cache policy.
	# See documentation for individual cache policies for more info.
	# This configuration section has an automatic default value.
	# cache_settings {
	# }

	# Configuration option allocation/cache_pool_chunk_size.
	# The minimal chunk size in KiB for cache pool volumes.
	# Using a chunk_size that is too large can result in wasteful use of
	# the cache, where small reads and writes can cause large sections of
	# an LV to be mapped into the cache. However, choosing a chunk_size
	# that is too small can result in more overhead trying to manage the
	# numerous chunks that become mapped into the cache. The former is
	# more of a problem than the latter in most cases, so the default is
	# on the smaller end of the spectrum. Supported values range from
	# 32KiB to 1GiB in multiples of 32.
	# This configuration option does not have a default value defined.

	# Configuration option allocation/cache_pool_max_chunks.
	# The maximum number of chunks in a cache pool.
	# For cache target v1.9 the recommended maximumm is 1000000 chunks.
	# Using cache pool with more chunks may degrade cache performance.
	# This configuration option does not have a default value defined.

	# Configuration option allocation/thin_pool_metadata_require_separate_pvs.
	# Thin pool metdata and data will always use different PVs.
	thin_pool_metadata_require_separate_pvs = 0

	# Configuration option allocation/thin_pool_zero.
	# Thin pool data chunks are zeroed before they are first used.
	# Zeroing with a larger thin pool chunk size reduces performance.
	# This configuration option has an automatic default value.
	# thin_pool_zero = 1

	# Configuration option allocation/thin_pool_discards.
	# The discards behaviour of thin pool volumes.
	# 
	# Accepted values:
	#   ignore
	#   nopassdown
	#   passdown
	# 
	# This configuration option has an automatic default value.
	# thin_pool_discards = "passdown"

	# Configuration option allocation/thin_pool_chunk_size_policy.
	# The chunk size calculation policy for thin pool volumes.
	# 
	# Accepted values:
	#   generic
	#     If thin_pool_chunk_size is defined, use it. Otherwise, calculate
	#     the chunk size based on estimation and device hints exposed in
	#     sysfs - the minimum_io_size. The chunk size is always at least
	#     64KiB.
	#   performance
	#     If thin_pool_chunk_size is defined, use it. Otherwise, calculate
	#     the chunk size for performance based on device hints exposed in
	#     sysfs - the optimal_io_size. The chunk size is always at least
	#     512KiB.
	# 
	# This configuration option has an automatic default value.
	# thin_pool_chunk_size_policy = "generic"

	# Configuration option allocation/thin_pool_chunk_size.
	# The minimal chunk size in KiB for thin pool volumes.
	# Larger chunk sizes may improve performance for plain thin volumes,
	# however using them for snapshot volumes is less efficient, as it
	# consumes more space and takes extra time for copying. When unset,
	# lvm tries to estimate chunk size starting from 64KiB. Supported
	# values are in the range 64KiB to 1GiB.
	# This configuration option does not have a default value defined.

	# Configuration option allocation/physical_extent_size.
	# Default physical extent size in KiB to use for new VGs.
	# This configuration option has an automatic default value.
	# physical_extent_size = 4096
}

# Configuration section log.
# How LVM log information is reported.
log {

	# Configuration option log/report_command_log.
	# Enable or disable LVM log reporting.
	# If enabled, LVM will collect a log of operations, messages,
	# per-object return codes with object identification and associated
	# error numbers (errnos) during LVM command processing. Then the
	# log is either reported solely or in addition to any existing
	# reports, depending on LVM command used. If it is a reporting command
	# (e.g. pvs, vgs, lvs, lvm fullreport), then the log is reported in
	# addition to any existing reports. Otherwise, there's only log report
	# on output. For all applicable LVM commands, you can request that
	# the output has only log report by using --logonly command line
	# option. Use log/command_log_cols and log/command_log_sort settings
	# to define fields to display and sort fields for the log report.
	# You can also use log/command_log_selection to define selection
	# criteria used each time the log is reported.
	# This configuration option has an automatic default value.
	# report_command_log = 0

	# Configuration option log/command_log_sort.
	# List of columns to sort by when reporting command log.
	# See <lvm command> --logonly --configreport log -o help
	# for the list of possible fields.
	# This configuration option has an automatic default value.
	# command_log_sort = "log_seq_num"

	# Configuration option log/command_log_cols.
	# List of columns to report when reporting command log.
	# See <lvm command> --logonly --configreport log -o help
	# for the list of possible fields.
	# This configuration option has an automatic default value.
	# command_log_cols = "log_seq_num,log_type,log_context,log_object_type,log_object_name,log_object_id,log_object_group,log_object_group_id,log_message,log_errno,log_ret_code"

	# Configuration option log/command_log_selection.
	# Selection criteria used when reporting command log.
	# You can define selection criteria that are applied each
	# time log is reported. This way, it is possible to control the
	# amount of log that is displayed on output and you can select
	# only parts of the log that are important for you. To define
	# selection criteria, use fields from log report. See also
	# <lvm command> --logonly --configreport log -S help for the
	# list of possible fields and selection operators. You can also
	# define selection criteria for log report on command line directly
	# using <lvm command> --configreport log -S <selection criteria>
	# which has precedence over log/command_log_selection setting.
	# For more information about selection criteria in general, see
	# lvm(8) man page.
	# This configuration option has an automatic default value.
	# command_log_selection = "!(log_type=status && message=success)"

	# Configuration option log/verbose.
	# Controls the messages sent to stdout or stderr.
	verbose = 0

	# Configuration option log/silent.
	# Suppress all non-essential messages from stdout.
	# This has the same effect as -qq. When enabled, the following commands
	# still produce output: dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck,
	# pvdisplay, pvs, version, vgcfgrestore -l, vgdisplay, vgs.
	# Non-essential messages are shifted from log level 4 to log level 5
	# for syslog and lvm2_log_fn purposes.
	# Any 'yes' or 'no' questions not overridden by other arguments are
	# suppressed and default to 'no'.
	silent = 0

	# Configuration option log/syslog.
	# Send log messages through syslog.
	syslog = 1

	# Configuration option log/file.
	# Write error and debug log messages to a file specified here.
	# This configuration option does not have a default value defined.

	# Configuration option log/overwrite.
	# Overwrite the log file each time the program is run.
	overwrite = 0

	# Configuration option log/level.
	# The level of log messages that are sent to the log file or syslog.
	# There are 6 syslog-like log levels currently in use: 2 to 7 inclusive.
	# 7 is the most verbose (LOG_DEBUG).
	level = 0

	# Configuration option log/indent.
	# Indent messages according to their severity.
	indent = 1

	# Configuration option log/command_names.
	# Display the command name on each line of output.
	command_names = 0

	# Configuration option log/prefix.
	# A prefix to use before the log message text.
	# (After the command name, if selected).
	# Two spaces allows you to see/grep the severity of each message.
	# To make the messages look similar to the original LVM tools use:
	# indent = 0, command_names = 1, prefix = " -- "
	prefix = "  "

	# Configuration option log/activation.
	# Log messages during activation.
	# Don't use this in low memory situations (can deadlock).
	activation = 0

	# Configuration option log/debug_classes.
	# Select log messages by class.
	# Some debugging messages are assigned to a class and only appear in
	# debug output if the class is listed here. Classes currently
	# available: memory, devices, io, activation, allocation, lvmetad,
	# metadata, cache, locking, lvmpolld. Use "all" to see everything.
	debug_classes = [ "memory", "devices", "io", "activation", "allocation", "lvmetad", "metadata", "cache", "locking", "lvmpolld", "dbus" ]
}

# Configuration section backup.
# How LVM metadata is backed up and archived.
# In LVM, a 'backup' is a copy of the metadata for the current system,
# and an 'archive' contains old metadata configurations. They are
# stored in a human readable text format.
backup {

	# Configuration option backup/backup.
	# Maintain a backup of the current metadata configuration.
	# Think very hard before turning this off!
	backup = 1

	# Configuration option backup/backup_dir.
	# Location of the metadata backup files.
	# Remember to back up this directory regularly!
	backup_dir = "/etc/lvm/backup"

	# Configuration option backup/archive.
	# Maintain an archive of old metadata configurations.
	# Think very hard before turning this off.
	archive = 1

	# Configuration option backup/archive_dir.
	# Location of the metdata archive files.
	# Remember to back up this directory regularly!
	archive_dir = "/etc/lvm/archive"

	# Configuration option backup/retain_min.
	# Minimum number of archives to keep.
	retain_min = 10

	# Configuration option backup/retain_days.
	# Minimum number of days to keep archive files.
	retain_days = 30
}

# Configuration section shell.
# Settings for running LVM in shell (readline) mode.
shell {

	# Configuration option shell/history_size.
	# Number of lines of history to store in ~/.lvm_history.
	history_size = 100
}

# Configuration section global.
# Miscellaneous global LVM settings.
global {

	# Configuration option global/umask.
	# The file creation mask for any files and directories created.
	# Interpreted as octal if the first digit is zero.
	umask = 077

	# Configuration option global/test.
	# No on-disk metadata changes will be made in test mode.
	# Equivalent to having the -t option on every command.
	test = 0

	# Configuration option global/units.
	# Default value for --units argument.
	units = "r"

	# Configuration option global/si_unit_consistency.
	# Distinguish between powers of 1024 and 1000 bytes.
	# The LVM commands distinguish between powers of 1024 bytes,
	# e.g. KiB, MiB, GiB, and powers of 1000 bytes, e.g. KB, MB, GB.
	# If scripts depend on the old behaviour, disable this setting
	# temporarily until they are updated.
	si_unit_consistency = 1

	# Configuration option global/suffix.
	# Display unit suffix for sizes.
	# This setting has no effect if the units are in human-readable form
	# (global/units = "h") in which case the suffix is always displayed.
	suffix = 1

	# Configuration option global/activation.
	# Enable/disable communication with the kernel device-mapper.
	# Disable to use the tools to manipulate LVM metadata without
	# activating any logical volumes. If the device-mapper driver
	# is not present in the kernel, disabling this should suppress
	# the error messages.
	activation = 1

	# Configuration option global/fallback_to_lvm1.
	# This setting is no longer used.
	# This configuration option has an automatic default value.
	# fallback_to_lvm1 = 0

	# Configuration option global/format.
	# This setting is no longer used.
	# This configuration option has an automatic default value.
	# format = "lvm2"

	# Configuration option global/format_libraries.
	# This setting is no longer used.
	# This configuration option does not have a default value defined.

	# Configuration option global/segment_libraries.
	# This configuration option does not have a default value defined.

	# Configuration option global/proc.
	# Location of proc filesystem.
	# This configuration option is advanced.
	proc = "/proc"

	# Configuration option global/etc.
	# Location of /etc system configuration directory.
	etc = "/etc"

	# Configuration option global/locking_type.
	# Type of locking to use.
	# 
	# Accepted values:
	#   0
	#     Turns off locking. Warning: this risks metadata corruption if
	#     commands run concurrently.
	#   1
	#     LVM uses local file-based locking, the standard mode.
	#   2
	#     LVM uses the external shared library locking_library.
	#   3
	#     LVM uses built-in clustered locking with clvmd.
	#     This is incompatible with lvmetad. If use_lvmetad is enabled,
	#     LVM prints a warning and disables lvmetad use.
	#   4
	#     LVM uses read-only locking which forbids any operations that
	#     might change metadata.
	#   5
	#     Offers dummy locking for tools that do not need any locks.
	#     You should not need to set this directly; the tools will select
	#     when to use it instead of the configured locking_type.
	#     Do not use lvmetad or the kernel device-mapper driver with this
	#     locking type. It is used by the --readonly option that offers
	#     read-only access to Volume Group metadata that cannot be locked
	#     safely because it belongs to an inaccessible domain and might be
	#     in use, for example a virtual machine image or a disk that is
	#     shared by a clustered machine.
	# 
	locking_type = 1

	# Configuration option global/wait_for_locks.
	# When disabled, fail if a lock request would block.
	wait_for_locks = 1

	# Configuration option global/fallback_to_clustered_locking.
	# Attempt to use built-in cluster locking if locking_type 2 fails.
	# If using external locking (type 2) and initialisation fails, with
	# this enabled, an attempt will be made to use the built-in clustered
	# locking. Disable this if using a customised locking_library.
	fallback_to_clustered_locking = 1

	# Configuration option global/fallback_to_local_locking.
	# Use locking_type 1 (local) if locking_type 2 or 3 fail.
	# If an attempt to initialise type 2 or type 3 locking failed, perhaps
	# because cluster components such as clvmd are not running, with this
	# enabled, an attempt will be made to use local file-based locking
	# (type 1). If this succeeds, only commands against local VGs will
	# proceed. VGs marked as clustered will be ignored.
	fallback_to_local_locking = 1

	# Configuration option global/locking_dir.
	# Directory to use for LVM command file locks.
	# Local non-LV directory that holds file-based locks while commands are
	# in progress. A directory like /tmp that may get wiped on reboot is OK.
	locking_dir = "/run/lock/lvm"

	# Configuration option global/prioritise_write_locks.
	# Allow quicker VG write access during high volume read access.
	# When there are competing read-only and read-write access requests for
	# a volume group's metadata, instead of always granting the read-only
	# requests immediately, delay them to allow the read-write requests to
	# be serviced. Without this setting, write access may be stalled by a
	# high volume of read-only requests. This option only affects
	# locking_type 1 viz. local file-based locking.
	prioritise_write_locks = 1

	# Configuration option global/library_dir.
	# Search this directory first for shared libraries.
	# This configuration option does not have a default value defined.

	# Configuration option global/locking_library.
	# The external locking library to use for locking_type 2.
	# This configuration option has an automatic default value.
	# locking_library = "liblvm2clusterlock.so"

	# Configuration option global/abort_on_internal_errors.
	# Abort a command that encounters an internal error.
	# Treat any internal errors as fatal errors, aborting the process that
	# encountered the internal error. Please only enable for debugging.
	abort_on_internal_errors = 0

	# Configuration option global/metadata_read_only.
	# No operations that change on-disk metadata are permitted.
	# Additionally, read-only commands that encounter metadata in need of
	# repair will still be allowed to proceed exactly as if the repair had
	# been performed (except for the unchanged vg_seqno). Inappropriate
	# use could mess up your system, so seek advice first!
	metadata_read_only = 0

	# Configuration option global/mirror_segtype_default.
	# The segment type used by the short mirroring option -m.
	# The --type mirror|raid1 option overrides this setting.
	# 
	# Accepted values:
	#   mirror
	#     The original RAID1 implementation from LVM/DM. It is
	#     characterized by a flexible log solution (core, disk, mirrored),
	#     and by the necessity to block I/O while handling a failure.
	#     There is an inherent race in the dmeventd failure handling logic
	#     with snapshots of devices using this type of RAID1 that in the
	#     worst case could cause a deadlock. (Also see
	#     devices/ignore_lvm_mirrors.)
	#   raid1
	#     This is a newer RAID1 implementation using the MD RAID1
	#     personality through device-mapper. It is characterized by a
	#     lack of log options. (A log is always allocated for every
	#     device and they are placed on the same device as the image,
	#     so no separate devices are required.) This mirror
	#     implementation does not require I/O to be blocked while
	#     handling a failure. This mirror implementation is not
	#     cluster-aware and cannot be used in a shared (active/active)
	#     fashion in a cluster.
	# 
	mirror_segtype_default = "raid1"

	# Configuration option global/raid10_segtype_default.
	# The segment type used by the -i -m combination.
	# The --type raid10|mirror option overrides this setting.
	# The --stripes/-i and --mirrors/-m options can both be specified
	# during the creation of a logical volume to use both striping and
	# mirroring for the LV. There are two different implementations.
	# 
	# Accepted values:
	#   raid10
	#     LVM uses MD's RAID10 personality through DM. This is the
	#     preferred option.
	#   mirror
	#     LVM layers the 'mirror' and 'stripe' segment types. The layering
	#     is done by creating a mirror LV on top of striped sub-LVs,
	#     effectively creating a RAID 0+1 array. The layering is suboptimal
	#     in terms of providing redundancy and performance.
	# 
	raid10_segtype_default = "raid10"

	# Configuration option global/sparse_segtype_default.
	# The segment type used by the -V -L combination.
	# The --type snapshot|thin option overrides this setting.
	# The combination of -V and -L options creates a sparse LV. There are
	# two different implementations.
	# 
	# Accepted values:
	#   snapshot
	#     The original snapshot implementation from LVM/DM. It uses an old
	#     snapshot that mixes data and metadata within a single COW
	#     storage volume and performs poorly when the size of stored data
	#     passes hundreds of MB.
	#   thin
	#     A newer implementation that uses thin provisioning. It has a
	#     bigger minimal chunk size (64KiB) and uses a separate volume for
	#     metadata. It has better performance, especially when more data
	#     is used. It also supports full snapshots.
	# 
	sparse_segtype_default = "thin"

	# Configuration option global/lvdisplay_shows_full_device_path.
	# Enable this to reinstate the previous lvdisplay name format.
	# The default format for displaying LV names in lvdisplay was changed
	# in version 2.02.89 to show the LV name and path separately.
	# Previously this was always shown as /dev/vgname/lvname even when that
	# was never a valid path in the /dev filesystem.
	# This configuration option has an automatic default value.
	# lvdisplay_shows_full_device_path = 0

	# Configuration option global/use_aio.
	# Use async I/O when reading and writing devices.
	# This configuration option has an automatic default value.
	# use_aio = 1

	# Configuration option global/use_lvmetad.
	# Use lvmetad to cache metadata and reduce disk scanning.
	# When enabled (and running), lvmetad provides LVM commands with VG
	# metadata and PV state. LVM commands then avoid reading this
	# information from disks which can be slow. When disabled (or not
	# running), LVM commands fall back to scanning disks to obtain VG
	# metadata. lvmetad is kept updated via udev rules which must be set
	# up for LVM to work correctly. (The udev rules should be installed
	# by default.) Without a proper udev setup, changes in the system's
	# block device configuration will be unknown to LVM, and ignored
	# until a manual 'pvscan --cache' is run. If lvmetad was running
	# while use_lvmetad was disabled, it must be stopped, use_lvmetad
	# enabled, and then started. When using lvmetad, LV activation is
	# switched to an automatic, event-based mode. In this mode, LVs are
	# activated based on incoming udev events that inform lvmetad when
	# PVs appear on the system. When a VG is complete (all PVs present),
	# it is auto-activated. The auto_activation_volume_list setting
	# controls which LVs are auto-activated (all by default.)
	# When lvmetad is updated (automatically by udev events, or directly
	# by pvscan --cache), devices/filter is ignored and all devices are
	# scanned by default. lvmetad always keeps unfiltered information
	# which is provided to LVM commands. Each LVM command then filters
	# based on devices/filter. This does not apply to other, non-regexp,
	# filtering settings: component filters such as multipath and MD
	# are checked during pvscan --cache. To filter a device and prevent
	# scanning from the LVM system entirely, including lvmetad, use
	# devices/global_filter.
	use_lvmetad = 1

	# Configuration option global/lvmetad_update_wait_time.
	# Number of seconds a command will wait for lvmetad update to finish.
	# After waiting for this period, a command will not use lvmetad, and
	# will revert to disk scanning.
	# This configuration option has an automatic default value.
	# lvmetad_update_wait_time = 10

	# Configuration option global/use_lvmlockd.
	# Use lvmlockd for locking among hosts using LVM on shared storage.
	# Applicable only if LVM is compiled with lockd support in which
	# case there is also lvmlockd(8) man page available for more
	# information.
	use_lvmlockd = 0

	# Configuration option global/lvmlockd_lock_retries.
	# Retry lvmlockd lock requests this many times.
	# Applicable only if LVM is compiled with lockd support
	# This configuration option has an automatic default value.
	# lvmlockd_lock_retries = 3

	# Configuration option global/sanlock_lv_extend.
	# Size in MiB to extend the internal LV holding sanlock locks.
	# The internal LV holds locks for each LV in the VG, and after enough
	# LVs have been created, the internal LV needs to be extended. lvcreate
	# will automatically extend the internal LV when needed by the amount
	# specified here. Setting this to 0 disables the automatic extension
	# and can cause lvcreate to fail. Applicable only if LVM is compiled
	# with lockd support
	# This configuration option has an automatic default value.
	# sanlock_lv_extend = 256

	# Configuration option global/thin_check_executable.
	# The full path to the thin_check command.
	# LVM uses this command to check that a thin metadata device is in a
	# usable state. When a thin pool is activated and after it is
	# deactivated, this command is run. Activation will only proceed if
	# the command has an exit status of 0. Set to "" to skip this check.
	# (Not recommended.) Also see thin_check_options.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# thin_check_executable = "/usr/bin/thin_check"

	# Configuration option global/thin_dump_executable.
	# The full path to the thin_dump command.
	# LVM uses this command to dump thin pool metadata.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# thin_dump_executable = "/usr/bin/thin_dump"

	# Configuration option global/thin_repair_executable.
	# The full path to the thin_repair command.
	# LVM uses this command to repair a thin metadata device if it is in
	# an unusable state. Also see thin_repair_options.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# thin_repair_executable = "/usr/bin/thin_repair"

	# Configuration option global/thin_check_options.
	# List of options passed to the thin_check command.
	# With thin_check version 2.1 or newer you can add the option
	# --ignore-non-fatal-errors to let it pass through ignorable errors
	# and fix them later. With thin_check version 3.2 or newer you should
	# include the option --clear-needs-check-flag.
	# This configuration option has an automatic default value.
	# thin_check_options = [ "-q", "--clear-needs-check-flag" ]

	# Configuration option global/thin_repair_options.
	# List of options passed to the thin_repair command.
	# This configuration option has an automatic default value.
	# thin_repair_options = [ "" ]

	# Configuration option global/thin_disabled_features.
	# Features to not use in the thin driver.
	# This can be helpful for testing, or to avoid using a feature that is
	# causing problems. Features include: block_size, discards,
	# discards_non_power_2, external_origin, metadata_resize,
	# external_origin_extend, error_if_no_space.
	# 
	# Example
	# thin_disabled_features = [ "discards", "block_size" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option global/cache_disabled_features.
	# Features to not use in the cache driver.
	# This can be helpful for testing, or to avoid using a feature that is
	# causing problems. Features include: policy_mq, policy_smq, metadata2.
	# 
	# Example
	# cache_disabled_features = [ "policy_smq" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option global/cache_check_executable.
	# The full path to the cache_check command.
	# LVM uses this command to check that a cache metadata device is in a
	# usable state. When a cached LV is activated and after it is
	# deactivated, this command is run. Activation will only proceed if the
	# command has an exit status of 0. Set to "" to skip this check.
	# (Not recommended.) Also see cache_check_options.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# cache_check_executable = "/usr/bin/cache_check"

	# Configuration option global/cache_dump_executable.
	# The full path to the cache_dump command.
	# LVM uses this command to dump cache pool metadata.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# cache_dump_executable = "/usr/bin/cache_dump"

	# Configuration option global/cache_repair_executable.
	# The full path to the cache_repair command.
	# LVM uses this command to repair a cache metadata device if it is in
	# an unusable state. Also see cache_repair_options.
	# (See package device-mapper-persistent-data or thin-provisioning-tools)
	# This configuration option has an automatic default value.
	# cache_repair_executable = "/usr/bin/cache_repair"

	# Configuration option global/cache_check_options.
	# List of options passed to the cache_check command.
	# With cache_check version 5.0 or newer you should include the option
	# --clear-needs-check-flag.
	# This configuration option has an automatic default value.
	# cache_check_options = [ "-q", "--clear-needs-check-flag" ]

	# Configuration option global/cache_repair_options.
	# List of options passed to the cache_repair command.
	# This configuration option has an automatic default value.
	# cache_repair_options = [ "" ]

	# Configuration option global/fsadm_executable.
	# The full path to the fsadm command.
	# LVM uses this command to help with lvresize -r operations.
	# This configuration option has an automatic default value.
	# fsadm_executable = "/usr/bin/fsadm"

	# Configuration option global/system_id_source.
	# The method LVM uses to set the local system ID.
	# Volume Groups can also be given a system ID (by vgcreate, vgchange,
	# or vgimport.) A VG on shared storage devices is accessible only to
	# the host with a matching system ID. See 'man lvmsystemid' for
	# information on limitations and correct usage.
	# 
	# Accepted values:
	#   none
	#     The host has no system ID.
	#   lvmlocal
	#     Obtain the system ID from the system_id setting in the 'local'
	#     section of an lvm configuration file, e.g. lvmlocal.conf.
	#   uname
	#     Set the system ID from the hostname (uname) of the system.
	#     System IDs beginning localhost are not permitted.
	#   machineid
	#     Use the contents of the machine-id file to set the system ID.
	#     Some systems create this file at installation time.
	#     See 'man machine-id' and global/etc.
	#   file
	#     Use the contents of another file (system_id_file) to set the
	#     system ID.
	# 
	system_id_source = "none"

	# Configuration option global/system_id_file.
	# The full path to the file containing a system ID.
	# This is used when system_id_source is set to 'file'.
	# Comments starting with the character # are ignored.
	# This configuration option does not have a default value defined.

	# Configuration option global/use_lvmpolld.
	# Use lvmpolld to supervise long running LVM commands.
	# When enabled, control of long running LVM commands is transferred
	# from the original LVM command to the lvmpolld daemon. This allows
	# the operation to continue independent of the original LVM command.
	# After lvmpolld takes over, the LVM command displays the progress
	# of the ongoing operation. lvmpolld itself runs LVM commands to
	# manage the progress of ongoing operations. lvmpolld can be used as
	# a native systemd service, which allows it to be started on demand,
	# and to use its own control group. When this option is disabled, LVM
	# commands will supervise long running operations by forking themselves.
	# Applicable only if LVM is compiled with lvmpolld support.
	use_lvmpolld = 1

	# Configuration option global/notify_dbus.
	# Enable D-Bus notification from LVM commands.
	# When enabled, an LVM command that changes PVs, changes VG metadata,
	# or changes the activation state of an LV will send a notification.
	notify_dbus = 1

	# Configuration option global/io_memory_size.
	# The amount of memory in KiB that LVM allocates to perform disk io.
	# LVM performance may benefit from more io memory when there are many
	# disks or VG metadata is large. Increasing this size may be necessary
	# when a single copy of VG metadata is larger than the current setting.
	# This value should usually not be decreased from the default; setting
	# it too low can result in lvm failing to read VGs.
	# This configuration option has an automatic default value.
	# io_memory_size = 8192
}

# Configuration section activation.
activation {

	# Configuration option activation/checks.
	# Perform internal checks of libdevmapper operations.
	# Useful for debugging problems with activation. Some of the checks may
	# be expensive, so it's best to use this only when there seems to be a
	# problem.
	checks = 0

	# Configuration option activation/udev_sync.
	# Use udev notifications to synchronize udev and LVM.
	# The --nodevsync option overrides this setting.
	# When disabled, LVM commands will not wait for notifications from
	# udev, but continue irrespective of any possible udev processing in
	# the background. Only use this if udev is not running or has rules
	# that ignore the devices LVM creates. If enabled when udev is not
	# running, and LVM processes are waiting for udev, run the command
	# 'dmsetup udevcomplete_all' to wake them up.
	udev_sync = 1

	# Configuration option activation/udev_rules.
	# Use udev rules to manage LV device nodes and symlinks.
	# When disabled, LVM will manage the device nodes and symlinks for
	# active LVs itself. Manual intervention may be required if this
	# setting is changed while LVs are active.
	udev_rules = 1

	# Configuration option activation/verify_udev_operations.
	# Use extra checks in LVM to verify udev operations.
	# This enables additional checks (and if necessary, repairs) on entries
	# in the device directory after udev has completed processing its
	# events. Useful for diagnosing problems with LVM/udev interactions.
	verify_udev_operations = 0

	# Configuration option activation/retry_deactivation.
	# Retry failed LV deactivation.
	# If LV deactivation fails, LVM will retry for a few seconds before
	# failing. This may happen because a process run from a quick udev rule
	# temporarily opened the device.
	retry_deactivation = 1

	# Configuration option activation/missing_stripe_filler.
	# Method to fill missing stripes when activating an incomplete LV.
	# Using 'error' will make inaccessible parts of the device return I/O
	# errors on access. Using 'zero' will return success (and zero) on I/O
	# You can instead use a device path, in which case,
	# that device will be used in place of missing stripes. Using anything
	# other than 'error' with mirrored or snapshotted volumes is likely to
	# result in data corruption.
	# This configuration option is advanced.
	missing_stripe_filler = "error"

	# Configuration option activation/use_linear_target.
	# Use the linear target to optimize single stripe LVs.
	# When disabled, the striped target is used. The linear target is an
	# optimised version of the striped target that only handles a single
	# stripe.
	use_linear_target = 1

	# Configuration option activation/reserved_stack.
	# Stack size in KiB to reserve for use while devices are suspended.
	# Insufficent reserve risks I/O deadlock during device suspension.
	reserved_stack = 64

	# Configuration option activation/reserved_memory.
	# Memory size in KiB to reserve for use while devices are suspended.
	# Insufficent reserve risks I/O deadlock during device suspension.
	reserved_memory = 8192

	# Configuration option activation/process_priority.
	# Nice value used while devices are suspended.
	# Use a high priority so that LVs are suspended
	# for the shortest possible time.
	process_priority = -18

	# Configuration option activation/volume_list.
	# Only LVs selected by this list are activated.
	# If this list is defined, an LV is only activated if it matches an
	# entry in this list. If this list is undefined, it imposes no limits
	# on LV activation (all are allowed).
	# 
	# Accepted values:
	#   vgname
	#     The VG name is matched exactly and selects all LVs in the VG.
	#   vgname/lvname
	#     The VG name and LV name are matched exactly and selects the LV.
	#   @tag
	#     Selects an LV if the specified tag matches a tag set on the LV
	#     or VG.
	#   @*
	#     Selects an LV if a tag defined on the host is also set on the LV
	#     or VG. See tags/hosttags. If any host tags exist but volume_list
	#     is not defined, a default single-entry list containing '@*'
	#     is assumed.
	# 
	# Example
	# volume_list = [ "vg1", "vg2/lvol1", "@tag1", "@*" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option activation/auto_activation_volume_list.
	# Only LVs selected by this list are auto-activated.
	# This list works like volume_list, but it is used only by
	# auto-activation commands. It does not apply to direct activation
	# commands. If this list is defined, an LV is only auto-activated
	# if it matches an entry in this list. If this list is undefined, it
	# imposes no limits on LV auto-activation (all are allowed.) If this
	# list is defined and empty, i.e. "[]", then no LVs are selected for
	# auto-activation. An LV that is selected by this list for
	# auto-activation, must also be selected by volume_list (if defined)
	# before it is activated. Auto-activation is an activation command that
	# includes the 'a' argument: --activate ay or -a ay. The 'a' (auto)
	# argument for auto-activation is meant to be used by activation
	# commands that are run automatically by the system, as opposed to LVM
	# commands run directly by a user. A user may also use the 'a' flag
	# directly to perform auto-activation. Also see pvscan(8) for more
	# information about auto-activation.
	# 
	# Accepted values:
	#   vgname
	#     The VG name is matched exactly and selects all LVs in the VG.
	#   vgname/lvname
	#     The VG name and LV name are matched exactly and selects the LV.
	#   @tag
	#     Selects an LV if the specified tag matches a tag set on the LV
	#     or VG.
	#   @*
	#     Selects an LV if a tag defined on the host is also set on the LV
	#     or VG. See tags/hosttags. If any host tags exist but volume_list
	#     is not defined, a default single-entry list containing '@*'
	#     is assumed.
	# 
	# Example
	# auto_activation_volume_list = [ "vg1", "vg2/lvol1", "@tag1", "@*" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option activation/read_only_volume_list.
	# LVs in this list are activated in read-only mode.
	# If this list is defined, each LV that is to be activated is checked
	# against this list, and if it matches, it is activated in read-only
	# mode. This overrides the permission setting stored in the metadata,
	# e.g. from --permission rw.
	# 
	# Accepted values:
	#   vgname
	#     The VG name is matched exactly and selects all LVs in the VG.
	#   vgname/lvname
	#     The VG name and LV name are matched exactly and selects the LV.
	#   @tag
	#     Selects an LV if the specified tag matches a tag set on the LV
	#     or VG.
	#   @*
	#     Selects an LV if a tag defined on the host is also set on the LV
	#     or VG. See tags/hosttags. If any host tags exist but volume_list
	#     is not defined, a default single-entry list containing '@*'
	#     is assumed.
	# 
	# Example
	# read_only_volume_list = [ "vg1", "vg2/lvol1", "@tag1", "@*" ]
	# 
	# This configuration option does not have a default value defined.

	# Configuration option activation/raid_region_size.
	# Size in KiB of each raid or mirror synchronization region.
	# The clean/dirty state of data is tracked for each region.
	# The value is rounded down to a power of two if necessary, and
	# is ignored if it is not a multiple of the machine memory page size.
	raid_region_size = 2048

	# Configuration option activation/error_when_full.
	# Return errors if a thin pool runs out of space.
	# The --errorwhenfull option overrides this setting.
	# When enabled, writes to thin LVs immediately return an error if the
	# thin pool is out of data space. When disabled, writes to thin LVs
	# are queued if the thin pool is out of space, and processed when the
	# thin pool data space is extended. New thin pools are assigned the
	# behavior defined here.
	# This configuration option has an automatic default value.
	# error_when_full = 0

	# Configuration option activation/readahead.
	# Setting to use when there is no readahead setting in metadata.
	# 
	# Accepted values:
	#   none
	#     Disable readahead.
	#   auto
	#     Use default value chosen by kernel.
	# 
	readahead = "auto"

	# Configuration option activation/raid_fault_policy.
	# Defines how a device failure in a RAID LV is handled.
	# This includes LVs that have the following segment types:
	# raid1, raid4, raid5*, and raid6*.
	# If a device in the LV fails, the policy determines the steps
	# performed by dmeventd automatically, and the steps perfomed by the
	# manual command lvconvert --repair --use-policies.
	# Automatic handling requires dmeventd to be monitoring the LV.
	# 
	# Accepted values:
	#   warn
	#     Use the system log to warn the user that a device in the RAID LV
	#     has failed. It is left to the user to run lvconvert --repair
	#     manually to remove or replace the failed device. As long as the
	#     number of failed devices does not exceed the redundancy of the LV
	#     (1 device for raid4/5, 2 for raid6), the LV will remain usable.
	#   allocate
	#     Attempt to use any extra physical volumes in the VG as spares and
	#     replace faulty devices.
	# 
	raid_fault_policy = "warn"

	# Configuration option activation/mirror_image_fault_policy.
	# Defines how a device failure in a 'mirror' LV is handled.
	# An LV with the 'mirror' segment type is composed of mirror images
	# (copies) and a mirror log. A disk log ensures that a mirror LV does
	# not need to be re-synced (all copies made the same) every time a
	# machine reboots or crashes. If a device in the LV fails, this policy
	# determines the steps perfomed by dmeventd automatically, and the steps
	# performed by the manual command lvconvert --repair --use-policies.
	# Automatic handling requires dmeventd to be monitoring the LV.
	# 
	# Accepted values:
	#   remove
	#     Simply remove the faulty device and run without it. If the log
	#     device fails, the mirror would convert to using an in-memory log.
	#     This means the mirror will not remember its sync status across
	#     crashes/reboots and the entire mirror will be re-synced. If a
	#     mirror image fails, the mirror will convert to a non-mirrored
	#     device if there is only one remaining good copy.
	#   allocate
	#     Remove the faulty device and try to allocate space on a new
	#     device to be a replacement for the failed device. Using this
	#     policy for the log is fast and maintains the ability to remember
	#     sync state through crashes/reboots. Using this policy for a
	#     mirror device is slow, as it requires the mirror to resynchronize
	#     the devices, but it will preserve the mirror characteristic of
	#     the device. This policy acts like 'remove' if no suitable device
	#     and space can be allocated for the replacement.
	#   allocate_anywhere
	#     Not yet implemented. Useful to place the log device temporarily
	#     on the same physical volume as one of the mirror images. This
	#     policy is not recommended for mirror devices since it would break
	#     the redundant nature of the mirror. This policy acts like
	#     'remove' if no suitable device and space can be allocated for the
	#     replacement.
	# 
	mirror_image_fault_policy = "remove"

	# Configuration option activation/mirror_log_fault_policy.
	# Defines how a device failure in a 'mirror' log LV is handled.
	# The mirror_image_fault_policy description for mirrored LVs also
	# applies to mirrored log LVs.
	mirror_log_fault_policy = "allocate"

	# Configuration option activation/snapshot_autoextend_threshold.
	# Auto-extend a snapshot when its usage exceeds this percent.
	# Setting this to 100 disables automatic extension.
	# The minimum value is 50 (a smaller value is treated as 50.)
	# Also see snapshot_autoextend_percent.
	# Automatic extension requires dmeventd to be monitoring the LV.
	# 
	# Example
	# Using 70% autoextend threshold and 20% autoextend size, when a 1G
	# snapshot exceeds 700M, it is extended to 1.2G, and when it exceeds
	# 840M, it is extended to 1.44G:
	# snapshot_autoextend_threshold = 70
	# 
	snapshot_autoextend_threshold = 100

	# Configuration option activation/snapshot_autoextend_percent.
	# Auto-extending a snapshot adds this percent extra space.
	# The amount of additional space added to a snapshot is this
	# percent of its current size.
	# 
	# Example
	# Using 70% autoextend threshold and 20% autoextend size, when a 1G
	# snapshot exceeds 700M, it is extended to 1.2G, and when it exceeds
	# 840M, it is extended to 1.44G:
	# snapshot_autoextend_percent = 20
	# 
	snapshot_autoextend_percent = 20

	# Configuration option activation/thin_pool_autoextend_threshold.
	# Auto-extend a thin pool when its usage exceeds this percent.
	# Setting this to 100 disables automatic extension.
	# The minimum value is 50 (a smaller value is treated as 50.)
	# Also see thin_pool_autoextend_percent.
	# Automatic extension requires dmeventd to be monitoring the LV.
	# 
	# Example
	# Using 70% autoextend threshold and 20% autoextend size, when a 1G
	# thin pool exceeds 700M, it is extended to 1.2G, and when it exceeds
	# 840M, it is extended to 1.44G:
	# thin_pool_autoextend_threshold = 70
	# 
	thin_pool_autoextend_threshold = 100

	# Configuration option activation/thin_pool_autoextend_percent.
	# Auto-extending a thin pool adds this percent extra space.
	# The amount of additional space added to a thin pool is this
	# percent of its current size.
	# 
	# Example
	# Using 70% autoextend threshold and 20% autoextend size, when a 1G
	# thin pool exceeds 700M, it is extended to 1.2G, and when it exceeds
	# 840M, it is extended to 1.44G:
	# thin_pool_autoextend_percent = 20
	# 
	thin_pool_autoextend_percent = 20

	# Configuration option activation/mlock_filter.
	# Do not mlock these memory areas.
	# While activating devices, I/O to devices being (re)configured is
	# suspended. As a precaution against deadlocks, LVM pins memory it is
	# using so it is not paged out, and will not require I/O to reread.
	# Groups of pages that are known not to be accessed during activation
	# do not need to be pinned into memory. Each string listed in this
	# setting is compared against each line in /proc/self/maps, and the
	# pages corresponding to lines that match are not pinned. On some
	# systems, locale-archive was found to make up over 80% of the memory
	# used by the process.
	# 
	# Example
	# mlock_filter = [ "locale/locale-archive", "gconv/gconv-modules.cache" ]
	# 
	# This configuration option is advanced.
	# This configuration option does not have a default value defined.

	# Configuration option activation/use_mlockall.
	# Use the old behavior of mlockall to pin all memory.
	# Prior to version 2.02.62, LVM used mlockall() to pin the whole
	# process's memory while activating devices.
	use_mlockall = 0

	# Configuration option activation/monitoring.
	# Monitor LVs that are activated.
	# The --ignoremonitoring option overrides this setting.
	# When enabled, LVM will ask dmeventd to monitor activated LVs.
	monitoring = 1

	# Configuration option activation/polling_interval.
	# Check pvmove or lvconvert progress at this interval (seconds).
	# When pvmove or lvconvert must wait for the kernel to finish
	# synchronising or merging data, they check and report progress at
	# intervals of this number of seconds. If this is set to 0 and there
	# is only one thing to wait for, there are no progress reports, but
	# the process is awoken immediately once the operation is complete.
	polling_interval = 15

	# Configuration option activation/auto_set_activation_skip.
	# Set the activation skip flag on new thin snapshot LVs.
	# The --setactivationskip option overrides this setting.
	# An LV can have a persistent 'activation skip' flag. The flag causes
	# the LV to be skipped during normal activation. The lvchange/vgchange
	# -K option is required to activate LVs that have the activation skip
	# flag set. When this setting is enabled, the activation skip flag is
	# set on new thin snapshot LVs.
	# This configuration option has an automatic default value.
	# auto_set_activation_skip = 1

	# Configuration option activation/activation_mode.
	# How LVs with missing devices are activated.
	# The --activationmode option overrides this setting.
	# 
	# Accepted values:
	#   complete
	#     Only allow activation of an LV if all of the Physical Volumes it
	#     uses are present. Other PVs in the Volume Group may be missing.
	#   degraded
	#     Like complete, but additionally RAID LVs of segment type raid1,
	#     raid4, raid5, radid6 and raid10 will be activated if there is no
	#     data loss, i.e. they have sufficient redundancy to present the
	#     entire addressable range of the Logical Volume.
	#   partial
	#     Allows the activation of any LV even if a missing or failed PV
	#     could cause data loss with a portion of the LV inaccessible.
	#     This setting should not normally be used, but may sometimes
	#     assist with data recovery.
	# 
	activation_mode = "degraded"

	# Configuration option activation/lock_start_list.
	# Locking is started only for VGs selected by this list.
	# The rules are the same as those for volume_list.
	# This configuration option does not have a default value defined.

	# Configuration option activation/auto_lock_start_list.
	# Locking is auto-started only for VGs selected by this list.
	# The rules are the same as those for auto_activation_volume_list.
	# This configuration option does not have a default value defined.
}

# Configuration section metadata.
# This configuration section has an automatic default value.
# metadata {

	# Configuration option metadata/check_pv_device_sizes.
	# Check device sizes are not smaller than corresponding PV sizes.
	# If device size is less than corresponding PV size found in metadata,
	# there is always a risk of data loss. If this option is set, then LVM
	# issues a warning message each time it finds that the device size is
	# less than corresponding PV size. You should not disable this unless
	# you are absolutely sure about what you are doing!
	# This configuration option is advanced.
	# This configuration option has an automatic default value.
	# check_pv_device_sizes = 1

	# Configuration option metadata/record_lvs_history.
	# When enabled, LVM keeps history records about removed LVs in
	# metadata. The information that is recorded in metadata for
	# historical LVs is reduced when compared to original
	# information kept in metadata for live LVs. Currently, this
	# feature is supported for thin and thin snapshot LVs only.
	# This configuration option has an automatic default value.
	# record_lvs_history = 0

	# Configuration option metadata/lvs_history_retention_time.
	# Retention time in seconds after which a record about individual
	# historical logical volume is automatically destroyed.
	# A value of 0 disables this feature.
	# This configuration option has an automatic default value.
	# lvs_history_retention_time = 0

	# Configuration option metadata/pvmetadatacopies.
	# Number of copies of metadata to store on each PV.
	# The --pvmetadatacopies option overrides this setting.
	# 
	# Accepted values:
	#   2
	#     Two copies of the VG metadata are stored on the PV, one at the
	#     front of the PV, and one at the end.
	#   1
	#     One copy of VG metadata is stored at the front of the PV.
	#   0
	#     No copies of VG metadata are stored on the PV. This may be
	#     useful for VGs containing large numbers of PVs.
	# 
	# This configuration option is advanced.
	# This configuration option has an automatic default value.
	# pvmetadatacopies = 1

	# Configuration option metadata/vgmetadatacopies.
	# Number of copies of metadata to maintain for each VG.
	# The --vgmetadatacopies option overrides this setting.
	# If set to a non-zero value, LVM automatically chooses which of the
	# available metadata areas to use to achieve the requested number of
	# copies of the VG metadata. If you set a value larger than the the
	# total number of metadata areas available, then metadata is stored in
	# them all. The value 0 (unmanaged) disables this automatic management
	# and allows you to control which metadata areas are used at the
	# individual PV level using pvchange --metadataignore y|n.
	# This configuration option has an automatic default value.
	# vgmetadatacopies = 0

	# Configuration option metadata/pvmetadatasize.
	# Approximate number of sectors to use for each metadata copy.
	# VGs with large numbers of PVs or LVs, or VGs containing complex LV
	# structures, may need additional space for VG metadata. The metadata
	# areas are treated as circular buffers, so unused space becomes filled
	# with an archive of the most recent previous versions of the metadata.
	# This configuration option has an automatic default value.
	# pvmetadatasize = 255

	# Configuration option metadata/pvmetadataignore.
	# Ignore metadata areas on a new PV.
	# The --metadataignore option overrides this setting.
	# If metadata areas on a PV are ignored, LVM will not store metadata
	# in them.
	# This configuration option is advanced.
	# This configuration option has an automatic default value.
	# pvmetadataignore = 0

	# Configuration option metadata/stripesize.
	# This configuration option is advanced.
	# This configuration option has an automatic default value.
	# stripesize = 64

	# Configuration option metadata/dirs.
	# Directories holding live copies of text format metadata.
	# These directories must not be on logical volumes!
	# It's possible to use LVM with a couple of directories here,
	# preferably on different (non-LV) filesystems, and with no other
	# on-disk metadata (pvmetadatacopies = 0). Or this can be in addition
	# to on-disk metadata areas. The feature was originally added to
	# simplify testing and is not supported under low memory situations -
	# the machine could lock up. Never edit any files in these directories
	# by hand unless you are absolutely sure you know what you are doing!
	# Use the supplied toolset to make changes (e.g. vgcfgrestore).
	# 
	# Example
	# dirs = [ "/etc/lvm/metadata", "/mnt/disk2/lvm/metadata2" ]
	# 
	# This configuration option is advanced.
	# This configuration option does not have a default value defined.
# }

# Configuration section report.
# LVM report command output formatting.
# This configuration section has an automatic default value.
# report {

	# Configuration option report/output_format.
	# Format of LVM command's report output.
	# If there is more than one report per command, then the format
	# is applied for all reports. You can also change output format
	# directly on command line using --reportformat option which
	# has precedence over log/output_format setting.
	# Accepted values:
	#   basic
	#     Original format with columns and rows. If there is more than
	#     one report per command, each report is prefixed with report's
	#     name for identification.
	#   json
	#     JSON format.
	# This configuration option has an automatic default value.
	# output_format = "basic"

	# Configuration option report/compact_output.
	# Do not print empty values for all report fields.
	# If enabled, all fields that don't have a value set for any of the
	# rows reported are skipped and not printed. Compact output is
	# applicable only if report/buffered is enabled. If you need to
	# compact only specified fields, use compact_output=0 and define
	# report/compact_output_cols configuration setting instead.
	# This configuration option has an automatic default value.
	# compact_output = 0

	# Configuration option report/compact_output_cols.
	# Do not print empty values for specified report fields.
	# If defined, specified fields that don't have a value set for any
	# of the rows reported are skipped and not printed. Compact output
	# is applicable only if report/buffered is enabled. If you need to
	# compact all fields, use compact_output=1 instead in which case
	# the compact_output_cols setting is then ignored.
	# This configuration option has an automatic default value.
	# compact_output_cols = ""

	# Configuration option report/aligned.
	# Align columns in report output.
	# This configuration option has an automatic default value.
	# aligned = 1

	# Configuration option report/buffered.
	# Buffer report output.
	# When buffered reporting is used, the report's content is appended
	# incrementally to include each object being reported until the report
	# is flushed to output which normally happens at the end of command
	# execution. Otherwise, if buffering is not used, each object is
	# reported as soon as its processing is finished.
	# This configuration option has an automatic default value.
	# buffered = 1

	# Configuration option report/headings.
	# Show headings for columns on report.
	# This configuration option has an automatic default value.
	# headings = 1

	# Configuration option report/separator.
	# A separator to use on report after each field.
	# This configuration option has an automatic default value.
	# separator = " "

	# Configuration option report/list_item_separator.
	# A separator to use for list items when reported.
	# This configuration option has an automatic default value.
	# list_item_separator = ","

	# Configuration option report/prefixes.
	# Use a field name prefix for each field reported.
	# This configuration option has an automatic default value.
	# prefixes = 0

	# Configuration option report/quoted.
	# Quote field values when using field name prefixes.
	# This configuration option has an automatic default value.
	# quoted = 1

	# Configuration option report/columns_as_rows.
	# Output each column as a row.
	# If set, this also implies report/prefixes=1.
	# This configuration option has an automatic default value.
	# columns_as_rows = 0

	# Configuration option report/binary_values_as_numeric.
	# Use binary values 0 or 1 instead of descriptive literal values.
	# For columns that have exactly two valid values to report
	# (not counting the 'unknown' value which denotes that the
	# value could not be determined).
	# This configuration option has an automatic default value.
	# binary_values_as_numeric = 0

	# Configuration option report/time_format.
	# Set time format for fields reporting time values.
	# Format specification is a string which may contain special character
	# sequences and ordinary character sequences. Ordinary character
	# sequences are copied verbatim. Each special character sequence is
	# introduced by the '%' character and such sequence is then
	# substituted with a value as described below.
	# 
	# Accepted values:
	#   %a
	#     The abbreviated name of the day of the week according to the
	#     current locale.
	#   %A
	#     The full name of the day of the week according to the current
	#     locale.
	#   %b
	#     The abbreviated month name according to the current locale.
	#   %B
	#     The full month name according to the current locale.
	#   %c
	#     The preferred date and time representation for the current
	#     locale (alt E)
	#   %C
	#     The century number (year/100) as a 2-digit integer. (alt E)
	#   %d
	#     The day of the month as a decimal number (range 01 to 31).
	#     (alt O)
	#   %D
	#     Equivalent to %m/%d/%y. (For Americans only. Americans should
	#     note that in other countries%d/%m/%y is rather common. This
	#     means that in international context this format is ambiguous and
	#     should not be used.
	#   %e
	#     Like %d, the day of the month as a decimal number, but a leading
	#     zero is replaced by a space. (alt O)
	#   %E
	#     Modifier: use alternative local-dependent representation if
	#     available.
	#   %F
	#     Equivalent to %Y-%m-%d (the ISO 8601 date format).
	#   %G
	#     The ISO 8601 week-based year with century as adecimal number.
	#     The 4-digit year corresponding to the ISO week number (see %V).
	#     This has the same format and value as %Y, except that if the
	#     ISO week number belongs to the previous or next year, that year
	#     is used instead.
	#   %g
	#     Like %G, but without century, that is, with a 2-digit year
	#     (00-99).
	#   %h
	#     Equivalent to %b.
	#   %H
	#     The hour as a decimal number using a 24-hour clock
	#     (range 00 to 23). (alt O)
	#   %I
	#     The hour as a decimal number using a 12-hour clock
	#     (range 01 to 12). (alt O)
	#   %j
	#     The day of the year as a decimal number (range 001 to 366).
	#   %k
	#     The hour (24-hour clock) as a decimal number (range 0 to 23);
	#     single digits are preceded by a blank. (See also %H.)
	#   %l
	#     The hour (12-hour clock) as a decimal number (range 1 to 12);
	#     single digits are preceded by a blank. (See also %I.)
	#   %m
	#     The month as a decimal number (range 01 to 12). (alt O)
	#   %M
	#     The minute as a decimal number (range 00 to 59). (alt O)
	#   %O
	#     Modifier: use alternative numeric symbols.
	#   %p
	#     Either "AM" or "PM" according to the given time value,
	#     or the corresponding strings for the current locale. Noon is
	#     treated as "PM" and midnight as "AM".
	#   %P
	#     Like %p but in lowercase: "am" or "pm" or a corresponding
	#     string for the current locale.
	#   %r
	#     The time in a.m. or p.m. notation. In the POSIX locale this is
	#     equivalent to %I:%M:%S %p.
	#   %R
	#     The time in 24-hour notation (%H:%M). For a version including
	#     the seconds, see %T below.
	#   %s
	#     The number of seconds since the Epoch,
	#     1970-01-01 00:00:00 +0000 (UTC)
	#   %S
	#     The second as a decimal number (range 00 to 60). (The range is
	#     up to 60 to allow for occasional leap seconds.) (alt O)
	#   %t
	#     A tab character.
	#   %T
	#     The time in 24-hour notation (%H:%M:%S).
	#   %u
	#     The day of the week as a decimal, range 1 to 7, Monday being 1.
	#     See also %w. (alt O)
	#   %U
	#     The week number of the current year as a decimal number,
	#     range 00 to 53, starting with the first Sunday as the first
	#     day of week 01. See also %V and %W. (alt O)
	#   %V
	#     The ISO 8601 week number of the current year as a decimal number,
	#     range 01 to 53, where week 1 is the first week that has at least
	#     4 days in the new year. See also %U and %W. (alt O)
	#   %w
	#     The day of the week as a decimal, range 0 to 6, Sunday being 0.
	#     See also %u. (alt O)
	#   %W
	#     The week number of the current year as a decimal number,
	#     range 00 to 53, starting with the first Monday as the first day
	#     of week 01. (alt O)
	#   %x
	#     The preferred date representation for the current locale without
	#     the time. (alt E)
	#   %X
	#     The preferred time representation for the current locale without
	#     the date. (alt E)
	#   %y
	#     The year as a decimal number without a century (range 00 to 99).
	#     (alt E, alt O)
	#   %Y
	#     The year as a decimal number including the century. (alt E)
	#   %z
	#     The +hhmm or -hhmm numeric timezone (that is, the hour and minute
	#     offset from UTC).
	#   %Z
	#     The timezone name or abbreviation.
	#   %%
	#     A literal '%' character.
	# 
	# This configuration option has an automatic default value.
	# time_format = "%Y-%m-%d %T %z"

	# Configuration option report/devtypes_sort.
	# List of columns to sort by when reporting 'lvm devtypes' command.
	# See 'lvm devtypes -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# devtypes_sort = "devtype_name"

	# Configuration option report/devtypes_cols.
	# List of columns to report for 'lvm devtypes' command.
	# See 'lvm devtypes -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# devtypes_cols = "devtype_name,devtype_max_partitions,devtype_description"

	# Configuration option report/devtypes_cols_verbose.
	# List of columns to report for 'lvm devtypes' command in verbose mode.
	# See 'lvm devtypes -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# devtypes_cols_verbose = "devtype_name,devtype_max_partitions,devtype_description"

	# Configuration option report/lvs_sort.
	# List of columns to sort by when reporting 'lvs' command.
	# See 'lvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# lvs_sort = "vg_name,lv_name"

	# Configuration option report/lvs_cols.
	# List of columns to report for 'lvs' command.
	# See 'lvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# lvs_cols = "lv_name,vg_name,lv_attr,lv_size,pool_lv,origin,data_percent,metadata_percent,move_pv,mirror_log,copy_percent,convert_lv"

	# Configuration option report/lvs_cols_verbose.
	# List of columns to report for 'lvs' command in verbose mode.
	# See 'lvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# lvs_cols_verbose = "lv_name,vg_name,seg_count,lv_attr,lv_size,lv_major,lv_minor,lv_kernel_major,lv_kernel_minor,pool_lv,origin,data_percent,metadata_percent,move_pv,copy_percent,mirror_log,convert_lv,lv_uuid,lv_profile"

	# Configuration option report/vgs_sort.
	# List of columns to sort by when reporting 'vgs' command.
	# See 'vgs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# vgs_sort = "vg_name"

	# Configuration option report/vgs_cols.
	# List of columns to report for 'vgs' command.
	# See 'vgs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# vgs_cols = "vg_name,pv_count,lv_count,snap_count,vg_attr,vg_size,vg_free"

	# Configuration option report/vgs_cols_verbose.
	# List of columns to report for 'vgs' command in verbose mode.
	# See 'vgs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# vgs_cols_verbose = "vg_name,vg_attr,vg_extent_size,pv_count,lv_count,snap_count,vg_size,vg_free,vg_uuid,vg_profile"

	# Configuration option report/pvs_sort.
	# List of columns to sort by when reporting 'pvs' command.
	# See 'pvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvs_sort = "pv_name"

	# Configuration option report/pvs_cols.
	# List of columns to report for 'pvs' command.
	# See 'pvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvs_cols = "pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free"

	# Configuration option report/pvs_cols_verbose.
	# List of columns to report for 'pvs' command in verbose mode.
	# See 'pvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvs_cols_verbose = "pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free,dev_size,pv_uuid"

	# Configuration option report/segs_sort.
	# List of columns to sort by when reporting 'lvs --segments' command.
	# See 'lvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# segs_sort = "vg_name,lv_name,seg_start"

	# Configuration option report/segs_cols.
	# List of columns to report for 'lvs --segments' command.
	# See 'lvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# segs_cols = "lv_name,vg_name,lv_attr,stripes,segtype,seg_size"

	# Configuration option report/segs_cols_verbose.
	# List of columns to report for 'lvs --segments' command in verbose mode.
	# See 'lvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# segs_cols_verbose = "lv_name,vg_name,lv_attr,seg_start,seg_size,stripes,segtype,stripesize,chunksize"

	# Configuration option report/pvsegs_sort.
	# List of columns to sort by when reporting 'pvs --segments' command.
	# See 'pvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvsegs_sort = "pv_name,pvseg_start"

	# Configuration option report/pvsegs_cols.
	# List of columns to sort by when reporting 'pvs --segments' command.
	# See 'pvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvsegs_cols = "pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free,pvseg_start,pvseg_size"

	# Configuration option report/pvsegs_cols_verbose.
	# List of columns to sort by when reporting 'pvs --segments' command in verbose mode.
	# See 'pvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvsegs_cols_verbose = "pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free,pvseg_start,pvseg_size,lv_name,seg_start_pe,segtype,seg_pe_ranges"

	# Configuration option report/vgs_cols_full.
	# List of columns to report for lvm fullreport's 'vgs' subreport.
	# See 'vgs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# vgs_cols_full = "vg_all"

	# Configuration option report/pvs_cols_full.
	# List of columns to report for lvm fullreport's 'vgs' subreport.
	# See 'pvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvs_cols_full = "pv_all"

	# Configuration option report/lvs_cols_full.
	# List of columns to report for lvm fullreport's 'lvs' subreport.
	# See 'lvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# lvs_cols_full = "lv_all"

	# Configuration option report/pvsegs_cols_full.
	# List of columns to report for lvm fullreport's 'pvseg' subreport.
	# See 'pvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvsegs_cols_full = "pvseg_all,pv_uuid,lv_uuid"

	# Configuration option report/segs_cols_full.
	# List of columns to report for lvm fullreport's 'seg' subreport.
	# See 'lvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# segs_cols_full = "seg_all,lv_uuid"

	# Configuration option report/vgs_sort_full.
	# List of columns to sort by when reporting lvm fullreport's 'vgs' subreport.
	# See 'vgs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# vgs_sort_full = "vg_name"

	# Configuration option report/pvs_sort_full.
	# List of columns to sort by when reporting lvm fullreport's 'vgs' subreport.
	# See 'pvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvs_sort_full = "pv_name"

	# Configuration option report/lvs_sort_full.
	# List of columns to sort by when reporting lvm fullreport's 'lvs' subreport.
	# See 'lvs -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# lvs_sort_full = "vg_name,lv_name"

	# Configuration option report/pvsegs_sort_full.
	# List of columns to sort by when reporting for lvm fullreport's 'pvseg' subreport.
	# See 'pvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# pvsegs_sort_full = "pv_uuid,pvseg_start"

	# Configuration option report/segs_sort_full.
	# List of columns to sort by when reporting lvm fullreport's 'seg' subreport.
	# See 'lvs --segments -o help' for the list of possible fields.
	# This configuration option has an automatic default value.
	# segs_sort_full = "lv_uuid,seg_start"

	# Configuration option report/mark_hidden_devices.
	# Use brackets [] to mark hidden devices.
	# This configuration option has an automatic default value.
	# mark_hidden_devices = 1

	# Configuration option report/two_word_unknown_device.
	# Use the two words 'unknown device' in place of '[unknown]'.
	# This is displayed when the device for a PV is not known.
	# This configuration option has an automatic default value.
	# two_word_unknown_device = 0
# }

# Configuration section dmeventd.
# Settings for the LVM event daemon.
dmeventd {

	# Configuration option dmeventd/mirror_library.
	# The library dmeventd uses when monitoring a mirror device.
	# libdevmapper-event-lvm2mirror.so attempts to recover from
	# failures. It removes failed devices from a volume group and
	# reconfigures a mirror as necessary. If no mirror library is
	# provided, mirrors are not monitored through dmeventd.
	mirror_library = "libdevmapper-event-lvm2mirror.so"

	# Configuration option dmeventd/raid_library.
	# This configuration option has an automatic default value.
	# raid_library = "libdevmapper-event-lvm2raid.so"

	# Configuration option dmeventd/snapshot_library.
	# The library dmeventd uses when monitoring a snapshot device.
	# libdevmapper-event-lvm2snapshot.so monitors the filling of snapshots
	# and emits a warning through syslog when the usage exceeds 80%. The
	# warning is repeated when 85%, 90% and 95% of the snapshot is filled.
	snapshot_library = "libdevmapper-event-lvm2snapshot.so"

	# Configuration option dmeventd/thin_library.
	# The library dmeventd uses when monitoring a thin device.
	# libdevmapper-event-lvm2thin.so monitors the filling of a pool
	# and emits a warning through syslog when the usage exceeds 80%. The
	# warning is repeated when 85%, 90% and 95% of the pool is filled.
	thin_library = "libdevmapper-event-lvm2thin.so"

	# Configuration option dmeventd/thin_command.
	# The plugin runs command with each 5% increment when thin-pool data volume
	# or metadata volume gets above 50%.
	# Command which starts with 'lvm ' prefix is internal lvm command.
	# You can write your own handler to customise behaviour in more details.
	# User handler is specified with the full path starting with '/'.
	# This configuration option has an automatic default value.
	# thin_command = "lvm lvextend --use-policies"

	# Configuration option dmeventd/executable.
	# The full path to the dmeventd binary.
	# This configuration option has an automatic default value.
	# executable = "/usr/bin/dmeventd"
}

# Configuration section tags.
# Host tag settings.
# This configuration section has an automatic default value.
# tags {

	# Configuration option tags/hosttags.
	# Create a host tag using the machine name.
	# The machine name is nodename returned by uname(2).
	# This configuration option has an automatic default value.
	# hosttags = 0

	# Configuration section tags/<tag>.
	# Replace this subsection name with a custom tag name.
	# Multiple subsections like this can be created. The '@' prefix for
	# tags is optional. This subsection can contain host_list, which is a
	# list of machine names. If the name of the local machine is found in
	# host_list, then the name of this subsection is used as a tag and is
	# applied to the local machine as a 'host tag'. If this subsection is
	# empty (has no host_list), then the subsection name is always applied
	# as a 'host tag'.
	# 
	# Example
	# The host tag foo is given to all hosts, and the host tag
	# bar is given to the hosts named machine1 and machine2.
	# tags { foo { } bar { host_list = [ "machine1", "machine2" ] } }
	# 
	# This configuration section has variable name.
	# This configuration section has an automatic default value.
	# tag {

		# Configuration option tags/<tag>/host_list.
		# A list of machine names.
		# These machine names are compared to the nodename returned
		# by uname(2). If the local machine name matches an entry in
		# this list, the name of the subsection is applied to the
		# machine as a 'host tag'.
		# This configuration option does not have a default value defined.
	# }
# }

/etc/mkinitcpio.conf

HOOKS=(base udev autodetect modconf block lvm2 encrypt filesystems keyboard fsck)

I notice it was wrong but I forgot to mention I changed it all ready.

Offline

#12 2020-01-14 20:38:37

Moosey_Linux
Member
From: Malmö Sweden
Registered: 2012-07-01
Posts: 44

Re: LVM boot fails can't find volume group [SOLVED]

I tried changing use_lvmetad = 1 to use_lvmetad = 0 I was thinking it could change something but no.

Offline

#13 2020-01-14 20:52:11

CarbonChauvinist
Member
Registered: 2012-06-16
Posts: 412
Website

Re: LVM boot fails can't find volume group [SOLVED]

Okay use_lvmetad looks good to my novice eyes (TMK it should be enabled).

Does adding dm_mod to the modules array of mkinitcpio.conf have any affect?

And/or is there any difference if you try and reference a UUID for the `cryptdevice` in the append line quoted below? (I have NO experience with syslinux, why are you using syslinux btw?)

Moosey_Linux wrote:

APPEND root=/dev/mapper/SysPart1-root cryptdevice=/dev/sda2:root vga=773

Last edited by CarbonChauvinist (2020-01-14 20:57:48)


"the wind-blown way, wanna win? don't play"

Offline

#14 2020-01-14 20:57:24

frostschutz
Member
Registered: 2013-11-15
Posts: 1,409

Re: LVM boot fails can't find volume group [SOLVED]

Your order of hooks should be ... encrypt lvm2 ..., not lvm2 encrypt. The order is relevant. If you do it the other way around, you're counting on lvmetad to pick up devices that appear considerably late (after you enter passphrase which might take forever) - this might work, or it might not. lvmetad is known to be unreliable, it no longer exists in higher version of lvm2. Even if it works it might happen delayed (as lvmetad is a background process) but after encrypt hook is finished the device is expected to exists instantly, so that might fail.

So change the order of hooks no matter what.

If you set use_lvmetad = 0 in /etc/lvm/lvm.conf you'll also have to create a custom lvm2 hook. You can't disable lvmetad with the default lvm2 hook as it completely depends on it.

/etc/initcpio/hooks/lvm2 (only for use_lvmetad = 0 and ... encrypt lvm2 ... hook order)

#!/usr/bin/ash
run_hook() {
    lvm vgchange --sysinit -a y
}

Another option might be to switch over to the systemd sd-encrypt hooks (getting rid of encrypt lvm2 hooks altogether) and see if that works better for you. It can definitely handle corner cases better (such as devices appearing late... not a problem for you as yours is encrypted and decrypt happens first, if you put your hooks in the correct order...)

I got rid of lvmetad since my setup is a bit more complicated and lvmetad can't handle it well at all - not to mention it's superfluous as it's all set up by the time initramfs finishes. Ubuntu (19.10) already ships lvm2-2.03 which has lvmetad removed altogether, ArchLinux is still on lvm2-2.02 and uses lvmetad by default.

edit:

last but not least, instead of root=/dev/mapper/SysPart1-root it's still more reliable to use UUID - unless perhaps it's fuse/otherwise special filesystem where UUID detection does not work

fancy device names aren't always created in early boot (depends on udev, or calling lvm vgscan --mknodes separately before and after vgchange -a y) but UUID is also happy with /dev/dm-123 generic name, thus UUID still works when other things fail

Last edited by frostschutz (2020-01-15 06:27:10)

Offline

#15 2020-01-15 20:43:44

Moosey_Linux
Member
From: Malmö Sweden
Registered: 2012-07-01
Posts: 44

Re: LVM boot fails can't find volume group [SOLVED]

#!/usr/bin/ash
run_hook() {
    lvm vgchange --sysinit -a y
}

That solved the problem thanks a million times frostschutz

Offline

#16 2020-01-16 20:30:59

Moosey_Linux
Member
From: Malmö Sweden
Registered: 2012-07-01
Posts: 44

Re: LVM boot fails can't find volume group [SOLVED]

CarbonChauvinist wrote:

(I have NO experience with syslinux, why are you using syslinux btw?)

I was very home safe white grub legacy and when time came to migrate i read an article about syslinux being a more grub legacy like boot loader then grub2. I have tried both and I think syslinux fits me better it is feature poor but very easy to configure compared to grub that is feature rich and somewhat complicated to configure.

Offline

Board footer

Powered by FluxBB